US 20120124559A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0124559 A1

Kondur 43) Pub. Date: May 17, 2012
(54) PERFORMANCE EVALUATION SYSTEM (52) US.Cl .ot 717/125
(76) Inventor: Shankar Narayana Kondur, Santa 57 ABSTRACT

Clara, CA (US
ard, (Us) A computer implemented method and system for concur-

(21) Appl. No.: 13/339,375 rently evaluating performance of multiple users in one or
more tests provides a performance evaluation platform that is

(22) Filed: Dec. 29, 2011 accessible to a client application on each of multiple client
devices via a network. The client application manages inter-

Related U.S. Application Data action of the users with the performance evaluation platform

via the network. The client application, in communication
with the performance evaluation platform, configures an
adaptive test environment at each of the client devices of the
users based on one or more tests selected by the users. The
(30) Foreign Application Priority Data client application on each of the client devices loads the
selected tests from the performance evaluation platform and

Aug. 21, 2007 (IN) 1866/CHE/2007 transmits solution responses to the selected tests acquired
from the users to the performance evaluation platform. The
performance evaluation platform configures processing ele-

(63) Continuation-in-part of application No. 12/039,756,
filed on Feb. 29, 2008, now abandoned.

Publication Classification

(51) Int.ClL ments for concurrently processing the solution responses and
GO6F 9/44 (2006.01) concurrently evaluates the performance of the users in the
GO6F 15/16 (2006.01) selected tests.

500
/

591 503
501 -
CLIENT DEVICE s02 ~) PERFORMANCE EVALUATION PLATFORM
/ CLIENT 503
. . a
CLIENT APPLICATION DEVICE Y, QULSTION 503e
502a 502d SHRVER RliNl)ILRII\{G)
(‘RAﬁ-U(‘ AL USIR J 504 CONNECTION MODULL
T . LAl
INTERFACE TEST AN SN MODULE
MANAGEMENT P "~ 503f
ILE [NEITWORK A ;
502b MODU L i USER 503, >
Wi { o CREDENTIALS | J DATABASE
CLIENT RN VALIDATION
CONNECTION T MODULL
MODUTE 502e 501
J) 503g
502¢ TMER CLIENT PROCESSING | 503¢ PLUG-IN
J DEVICE MODULE L/ COMPONENTS
TEST
ENVIRONMENT
CONFIGURATION ~PRLICATION
MODULE EVALUATION |0 PROGRAMMING j()?:h
LNGINE INTERFACE

May 17,2012 Sheet 1 of 7 US 2012/0124559 A1

Patent Application Publication

LO1L
/ AT TUNVH LSHNOTA
y
1 Anano 1sanoad
901 ,
ANAND ASNOJISTH
—
sO1 ATAAAS ANTHOVIA TVLLAIA
601
LO1
/, A4 IANVH LSHNOHY

—

ANANO 1.SHNOTI

o

I

ANAN0 ASNOISTA

—

S01 AAANAS ANTHOVIN TVNLAIA

601

801

1°O1d

oV

€01

141

YHHDILVASIA 1SN0

S8D0dd INAT'TO

JTTANVH HSNOJSHA

1311
\—,

—
<01

YAHILVASIA LSANOTA

S8D0dd INAT'TO

I TANVH dSNOJ ST

1311

v
01

N

YAHD.LVASIA LSANOTA

S8D0dd INAT'TO

\l

A TANVH ASNOdSHY

(411}

101

101

101

Patent Application Publication = May 17, 2012 Sheet 2 of 7 US 2012/0124559 A1

PARSE INCOMING REQUESTS FROM EACH USER BY USING A SET
OF CHILD PROCESSES

l

LOAD THE PARSED REQUESTS IN A REQUEST QUEUE BY USING
A SET OF CHILD PROCESSES

HANDLE THE LOADED REQUESTS BY USING A SET OF FORKED
CHILD PROCESSES

l

COMPILE THE SOFTWARE CODES BY USING A SET OF FORKED
CHILD PROCESSES

EXECUTE THE SOFTWARE CODES BY USING A SET OF FORKED
CHILD PROCESSES

l

LOAD EXECUTED SOFTWARE CODES ON A FILE SYSTEM

FIG. 2

201

202

203

204

205

206

Patent Application Publication = May 17, 2012 Sheet 3 of 7 US 2012/0124559 A1

PARSE INCOMING REQUESTS FROM A USER BY USING A THREAD
POOL

LOAD THE PARSED REQUESTS IN A REQUEST QUEUE BY USING
A THREAD POOL

HANDLE THE LOADED REQUESTS BY USING A THREAD POOL

A 4

COMPILE THE SOFTWARE CODES BY USING A THREAD POOL

A 4

EXECUTE THE SOFTWARE CODES BY USING A THREAD POOL

LOAD EXECUTED SOFTWARE CODES ON A FILE SYSTEM

F1G. 3

301

302

303

304

305

306

Patent Application Publication = May 17, 2012 Sheet 4 of 7 US 2012/0124559 A1

401
PROVIDE A PERFORMANCE EVALUATION PLATFORM ACCESSIBLE BY_/

MULTIPLE CLIENT DEVICES OF THE USERS VIA A NETWORK

v

PROVIDE A CLIENT APPLICATION ON EACH OF THE CLIENT DEVICES | 402
FOR MANAGING INTERACTION OF EACH OF THE USERS WITHTHE | _J
PERFORMANCE EVALUATION PLATFORM VIA THE NETWORK

v

SELECT ONE OR MORE OF MULTIPLE TESTS HOSTED BY THE 403
PERFORMANCE EVALUATION PLATFORM, BY ONE OR MORE OF THE |/
USERS VIA A GRAPHICAL USER INTERFACE PROVIDED BY THE
CLIENT APPLICATION

v

CONFIGURE AN ADAPTIVE TEST ENVIRONMENT AT EACH OF THE

CLIENT DEVICES OF THE USERS BASED ON THE SELECTED TESTS BY 404
THE CLIENT APPLICATION IN COMMUNICATION WITH THE -

PERFORMANCE EVALUATION PLATFORM VIA THE NETWORK

v

LOAD THE SELECTED TESTS FROM THE PERFORMANCE EVALUATION| 405
PLATFORM BY THE CLIENT APPLICATION IN THE CONFIGURED %
ADAPTIVE TEST ENVIRONMENT VIA THE NETWORK

ACQUIRE SOLUTION RESPONSES TO THE SELECTED TESTS FROM THE| 406
USERS BY THE CLIENT APPLICATION |/

v

TRANSMIT THE ACQUIRED SOLUTION RESPONSES BY THE CLIENT 407
APPLICATION TO THE PERFORMANCE EVALUATION PLATFORM VIA |/
THE NETWORK

v

CONFIGURE PROCESSING ELEMENTS BY THE PERFORMANCE 408
EVALUATION PLATFORM FOR CONCURRENTLY PROCESSING THE [_/
SOLUTION RESPONSES ACQUIRED FROM THE USERS BASED ON

THE SELECTED TESTS
CONCURRENTLY EVALUATE THE PERFORMANCE OF EACH OF THE | 409
USERS IN THE SELECTED TESTS BY THE PERFORMANCE |/

EVALUATION PLATFORM BASED ON THE CONCURRENT
PROCESSING OF THE SOLUTION RESPONSES

FIG. 4

00s \

—
-
(=)
[g
5 SAIK |
o
y—
<
o
y—
(=]
o
[70]
o
AOVIIALNI ANIONT
- :mcm ONINAY IDOUd | Nomvavag TINAON
= NOLLVOI'TddV PE0s NOLLVINOLINOD
- INHNNOYIANE
= ILSAL
£ SINANOdINOD e TINAOW ADIAAA R ﬂ -
7 7 NI-DN'd 0S| oNISSADOUd LNHT'LO ATNIL ¢
N 3¢0s [
m 10S oﬂm HTNAONW
S —— v zciomzmoo
— NOLLVAI'IVA oy TN INATT
B asvavivda (1 STVILNEARD | eyt } 4
> Y
= < B RER! Y ONOMIAN TINAOW acos
JE0S . o INANADVNVIN ADVAMALNI
S i ol LSAL
m HINAOW wwm MASN TVOIHIVID
M TINAOW NOLLDANNOD 4 Ve
2 /1 oNrgHaNT™ REGRER Pzos ez0s
= 90| NOILSANO amc\ c AOIAAd NOLLVOI'IddV INHI'TD
nm INATTD /4
£ INMOALYTd NOLLVIY IV AT HONVINIOIIAd I c\n s ADIAAA INATTD
a -
2 (7
lw €0s Los
-
~—
=
[P
~N—
~
=W

Patent Application Publication

May 17,2012 Sheet 6 of 7

US 2012/0124559 A1l

600

/

605 /606
601 DISPLAY
/ UNIT
PROCESSOR
607
INPUT
DEVICES
/602
MEMORY 608
UNIT /
FIXED
MEDIA
DRIVE
603
609
110) /
CONTROLLER
REMOVABLE
MEDIA
DRIVE
604
/ 610
NETWORK
INTERFACE OUTPUT
DEVICES

FI1G. 6

May 17,2012 Sheet 7 of 7 US 2012/0124559 A1l

Patent Application Publication

€0s

LD
Jeos | Asvaviva
N ANIONT NOLLV TV AL
'
Peos
JAAIAS <
7 ANIONA NOLLVN IVAH UNIHOVINIVILLAIA
7 o
PEOS 601
[ANIONA NOLLV O TVAA
—
PEOs

INJOALVId NOLLVYTVAH HONVINIOAddd

€ ADIAGA INAI'TD
—
10S
e
Sl x.
A Je» 7 ADIAAA INATTD
{]
¥ NAOMILAN) -
A - 10S
,./..b.im...z. Qn,wv.., o
vos

/ 00s

[AOIAHAA INAT'TO

—
108

US 2012/0124559 Al

PERFORMANCE EVALUATION SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This is a continuation-in-part application of non-
provisional patent application Ser. No. 12/039,756, titled
“Method And System For Compilation And Execution Of
Software Codes” filed on Feb. 29, 2008 in the United States
Patent and Trademark Office, which claims the benefit of
non-provisional patent application number 1866/CHE/2007,
titled “Method And System For Compilation And Execution
Of Software Codes” filed on Aug. 21, 2007 in the Indian
Patent Office.

[0002] The specifications of the above referenced patent
applications are incorporated herein by reference in their
entirety.

BACKGROUND

[0003] The computer implemented method and system dis-
closed herein, in general, relates to a system for evaluating
performance of users in one or more tests in addition to
methods for compiling and executing a software code during
testing of programming skills of a user. More particularly, the
computer implemented method and system disclosed herein
relates to concurrent evaluation of the performance of mul-
tiple users in one or more tests in addition to concurrent
compilation and execution of multiple software codes in pro-
gramming based tests.

[0004] Conventional testing platforms for evaluating the
performance of users have typically been confined to per-
forming testing in a specific knowledge domain, thereby
requiring users to register at multiple different testing plat-
forms for testing their skills across multiple knowledge
domains. Therefore, there is a need for a testing platform that
can adapt testing to newer technologies and knowledge
domains. Consider an example where a new programming
language created for a niche technology may be found appli-
cable across multiple knowledge domains and applications,
thereby qualifying knowledge of the programming language
as an essential job skill This requires a testing platform that
provides a testing framework for evaluating the proficiency of
multiple users in the new programming language. Moreover,
the programming language may require new file formats,
testing environments, etc. Since the introduction of the pro-
gramming language to the public domain may be recent, it is
often difficult for conventional testing platforms to design
testing frameworks that meet the additional requirements of
the new programming language. Furthermore, there is a need
for a flexible testing platform which can seamlessly integrate
features of multiple different versions and formats developed
by third party software developers to a particular testing
methodology and framework. Moreover, the testing environ-
ments provided by conventional testing platforms are typi-
cally preconfigured with fixed settings and user interfaces that
allow limited scope for modification based on the preferences
of the user.

[0005] Furthermore, for evaluating the programming skills
of a user, the testing platforms typically need to compile and
execute software codes before they can perform the evalua-
tion of the quality of the software code. However, conven-
tional testing platforms are constrained by an inability to
process multiple software codes quickly. For example, in the
existing methods of compiling a software code, a compiler

May 17, 2012

parses the software code, links the parsed software code with
common libraries and system libraries, and creates an execut-
able binary output of the software code. The software codes
from multiple users are compiled separately with the above
mentioned steps of parsing, linking, and creating executable
binary outputs. The overheads for compilation and execution
of these software codes increase with an increase in the num-
ber of software codes.

[0006] Loading and parsing of common libraries, system
libraries, and header files for every compilation process
increases the compilation time. Further, handling multiple
requests for compilation may not be efficient. Therefore, a
standard compiler may not achieve a large number of compi-
lations concurrently with limited resources. The above men-
tioned limitations increase with an increase in the number of
compilation requests.

[0007] Hence, there is a long felt but unresolved need for a
computer implemented method and system that can flexibly
adapt testing of one or more users with newer technologies
across multiple knowledge domains. Moreover, there is a
need for a computer implemented method and system that
concurrently evaluates performance of multiple users in one
or more tests of different types in different knowledge
domains to optimize the time taken for evaluation of the
performance of multiple users in these tests. Furthermore,
there is a need for a computer implemented method and
system that achieves a large number of compilations concur-
rently with limited resources, handles multiple compilation
and execution requests efficiently, and performs a faster
execution of multiple software codes, for enabling a faster
evaluation of programming skills of multiple users.

SUMMARY OF THE INVENTION

[0008] This summary is provided to introduce a selection of
concepts in a simplified form that are further disclosed in the
detailed description of the invention. This summary is not
intended to identify key or essential inventive concepts of the
claimed subject matter, nor is it intended for determining the
scope of the claimed subject matter.

[0009] The computer implemented method and system dis-
closed herein addresses the above mentioned need for flexibly
adapting testing of one or more users with newer technologies
across multiple knowledge domains. The computer imple-
mented method and system disclosed herein also addresses
the above mentioned need for concurrently evaluating perfor-
mance of multiple users in one or more tests of different types
in different knowledge domains to optimize the time taken for
evaluation of the performance of multiple users in these tests.
[0010] The computer implemented method and system for
concurrently evaluating performance of multiple users in one
or more tests disclosed herein, provides a performance evalu-
ation platform accessible by multiple client devices of mul-
tiple users via a network. The performance evaluation plat-
form hosts multiple tests across multiple knowledge domains.
The computer implemented method and system disclosed
herein also provides a client application on each of the client
devices of the users for managing interaction of each of the
users with the performance evaluation platform via the net-
work. One or more of the users select one or more of multiple
tests hosted by the performance evaluation platform via a
graphical user interface (GUI) provided by the client appli-
cation on each of the client devices of the users.

[0011] The client application on each of the client devices
of the users establishes a connection with the performance

US 2012/0124559 Al

evaluation platform via the network. The client application
transmits requests querying availability of the performance
evaluation platform for triggering initiation of the selected
tests. The client application receives connection parameters
from the performance evaluation platform via the network for
establishing the connection with the performance evaluation
platform, on confirming availability of the performance
evaluation platform. Furthermore, the performance evalua-
tion platform continually monitors requests from the client
application on each of the client devices, for example, for
establishing a connection with the client devices, for concur-
rent processing of solution responses acquired from the users,
etc. As used herein, the term “solution response” refers to an
answer or a response provided by a user to a particular ques-
tion or a problem contained in a test.

[0012] The client application, in communication with the
performance evaluation platform via the network, configures
an adaptive test environment at each of the client devices of
the users based on the selected tests and each user’s prefer-
ences. As used herein, the term “adaptive test environment”
refers to a test environment that can be configured to accom-
modate specific features, settings, file formats, software com-
ponents, etc., necessary for conduction of a particular type of
test on a client device. The performance evaluation platform
validates user credentials of the users during the configuration
of the adaptive test environment at each of the client devices
of the users by the client application. In an embodiment, the
client application automatically loads plug-in components
from the performance evaluation platform via the network
based on the selected tests during configuration of the adap-
tive test environment at each of the client devices.

[0013] The client application loads the selected tests from
the performance evaluation platform in the configured adap-
tive test environment via the network. In an embodiment, the
performance evaluation platform sets a time duration for one
or more of the selected tests. The client application triggers a
timer on initiation of the time duration set by the performance
evaluation platform for the selected tests for timing the per-
formance of the each of the users in the selected tests.

[0014] The client application on each of the client devices
of the users acquires and transmits solution responses to the
selected tests from the users to the performance evaluation
platform via the network. The performance evaluation plat-
form configures processing elements for concurrently pro-
cessing the solution responses acquired from the users based
on the selected tests. The processing elements are, for
example, threads, child processes, etc. The performance
evaluation platform spawns multiple forked child processes
or multiple threads for the concurrent processing of the solu-
tionresponses acquired from the users. In an embodiment, the
performance evaluation platform adaptively renders ques-
tions in the selected tests based on a preliminary set of solu-
tion responses acquired from the users.

[0015] The performance evaluation platform concurrently
evaluates the performance of each of the users in the selected
tests based on the concurrent processing of the solution
responses. The performance evaluation platform first loads
the acquired solution responses in a request queue. The per-
formance evaluation platform parses the acquired solution
responses in the request queue for procuring information on
the selection of the tests hosted by the performance evaluation
platform. The performance evaluation platform classifies the
parsed solution responses based on the procured information
on the selection of the tests. The performance evaluation

May 17, 2012

platform transfers the classified solution responses to solution
processing queues associated with the selected tests. The
performance evaluation platform analyzes the classified solu-
tion responses in the associated solution processing queues
for assigning an evaluation score to each of the classified
solution responses based on evaluation criteria. The evalua-
tion criteria for generation of evaluation scores comprise, for
example, time duration for completion of the selected tests by
each of the users, accuracy of the solution responses acquired
from each of the users, etc.

[0016] The performance evaluation platform generates
evaluation scores for each of the users based on the evaluation
criteria and transmits the generated evaluation scores to the
client devices of the users via the network. In an embodiment,
the performance evaluation platform computes a relative
score based on the generated evaluation scores of each of the
users for providing a comparative assessment of the perfor-
mance of each of the users in the selected tests. The perfor-
mance evaluation platform stores the solution responses
acquired from the users and the evaluation scores generated
on concurrent evaluation of the performance of each of the
users in the selected tests, in a database of the performance
evaluation platform for progressively tracking the perfor-
mance of each of the users in the selected tests over a period
of time.

[0017] Furthermore, the computer implemented method
and system disclosed herein addresses the above mentioned
need for achieving a large number of compilations concur-
rently with limited resources, handling multiple requests effi-
ciently, and performing a faster execution of multiple soft-
ware codes for enabling a faster evaluation of programming
skills of multiple users. As used herein, the term “software
codes” refers to computer programs written in a specific
programming language, for example, C, C++, etc.

[0018] A separate thread is provided on a virtual machine
(VM) server in the performance evaluation platform to listen
to broadcasts from multiple client processes requesting for
the availability of the VM server for compiling and executing
multiple software codes. The VM server then broadcasts VM
server information to the requesting client processes. When a
client process obtains the VM server information, a client
socket of the client device sends a connection request to the
VM server. A VM server socket listens to the incoming con-
nection request from the client process. A request dispatcher
transmits requests to the VM server. When the connection is
established between the VM server and the client process, the
incoming requests from the client process to the VM server is
stacked in a request queue to be handled. The requests from
the client processes are, for example, for compiling and
executing the software codes submitted by the users. A
request handler present in the VM server handles the requests
stacked in the request queue. A request handler thread pool
takes and handles the requests from the request queue. The
handled requests are stacked as run requests in a separate run
request queue. A response queue is provided onthe VM server
to collect the responses to be transmitted to the client pro-
cesses. The responses to the requests from the client pro-
cesses are, for example, executable binary formats of the
software codes or outputs generated by executing the soft-
ware codes. The executable binary format of each of the
software codes is loaded on a file system for further execu-
tions. The response handler provided on each client device
handles the response from the VM server.

US 2012/0124559 Al

[0019] The computer implemented method and system dis-
closed herein uses a compiler. The compiler uses a system file
cache and a binary cache that are maintained for each client
process. The common libraries, the system libraries, and the
header files required for each compilation are stored in the
system file cache. The object files or class files obtained after
each compilation by the compiler are stored in the binary
cache. During the compilation of the software code, if a
required header or a library is not available on the system file
cache, the respective header or library file is loaded from a file
system to the system file cache. The header or library file
stored in the system file cache is used for current and subse-
quent compilations. If the source file of the software code is
not modified since the last compilation, then the object file or
the class file stored in the binary cache is used for compila-
tion. The binary cache is updated with object files and class
files generated with every new compilation. The libraries and
headers stored in the system file cache and the object files and
class files stored in the binary cache are linked to generate the
required executable of the software code.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The foregoing summary, as well as the following
detailed description of the invention, is better understood
when read in conjunction with the appended drawings. For
the purpose of illustrating the invention, exemplary construc-
tions of the invention are shown in the drawings. However, the
invention is not limited to the specific methods and compo-
nents disclosed herein.

[0021] FIG. 1 exemplarily illustrates a computer imple-
mented system for handling multiple compilation requests,
compiling, and executing multiple software codes.

[0022] FIG. 2 exemplarily illustrates a first computer
implemented method for compiling and executing multiple
software codes using multiple forked child processes.
[0023] FIG. 3 exemplarily illustrates a second computer
implemented method for compiling and executing multiple
software codes using multiple threads.

[0024] FIG. 4 illustrates a computer implemented method
for concurrently evaluating performance of multiple users in
one or more tests.

[0025] FIG. 5 illustrates a computer implemented system
for concurrently evaluating performance of multiple users in
one or more tests.

[0026] FIG. 6 exemplarily illustrates the architecture of a
computer system employed for concurrently evaluating per-
formance of multiple users in one or more tests.

[0027] FIG.7 exemplarily illustrates a high level schematic
diagram of a computer implemented system for concurrently
evaluating the performance of multiple users in multiple tests.

DETAILED DESCRIPTION OF THE INVENTION

[0028] FIG. 1 exemplarily illustrates a computer imple-
mented system for handling multiple compilation requests,
compiling, and executing multiple software codes. As used
herein, the term “software codes™ refers to computer pro-
grams written in a specific programming language, for
example, C, C++, etc. Using client processes 101, software
codes created on client devices by multiple users are trans-
mitted to a virtual machine (VM) server 109 for further com-
pilation, execution, and evaluation of the software codes. The
client devices comprise, for example, personal computers,
laptops, mobile communication devices, tablet computing

May 17, 2012

devices, personal digital assistants, etc. Each user’s requests
for compilation and execution of the software codes are gen-
erated by the corresponding client process 101 and transmit-
ted to the VM server 109. The VM server 109 comprises a
request queue 106, a request handler 107, a response queue
105, and a VM server socket 108. The VM server 109 pro-
vides VM server information to each of the client processes
101. The VM server information is transmitted between the
VM server socket 108 and client sockets 103 of the users’
client devices. The VM server information comprises, for
example, the type of VM server 109, details of a listening port
of the VM server 109, and a hostname of the VM server 109.
A separate thread is provided on the VM server 109 to listen
to broadcasts from the client processes 101 requesting for the
availability of the VM server 109. The VM server 109 then
broadcasts the VM server information to the client processes
101.

[0029] When a client process 101 obtains the VM server
information from the VM server 109, a client socket 103 of
the client device sends a connection request to the VM server
109. The VM server socket 108 of the VM server 109 listens
to the incoming connection request from the client process
101. A request dispatcher 104 transmits requests from the
client process 101 to the VM server 109. The VM server
socket 108 is configured to accept connections from multiple
client processes 101. When the connection is established
between the VM server 109 and the client process 101 on the
client device, the incoming requests from the client process
101 to the VM server 109 are stacked in the request queue 106
of'the VM server 109. The requests from the client processes
101 are, for example, for compiling and executing software
codes submitted by the users. Multiple requests to the VM
server 109 may be issued from a single client process 101 or
multiple client processes 101. The request handler 107
present in the VM server 109 handles the requests stacked in
the request queue 106. The requests are taken from the request
queue 106 and handled by a request handler thread pool or a
request handling set of forked child processes. The handled
requests are stacked as run requests in a separate run request
queue. Since the run task of the run requests can be time
intensive, the run requests are handled by a separate run
request handler thread pool or a run request handling set of
forked child processes. The request handler thread pool and
the run request handler thread pool are provided separately to
avoid exhaustion of threads while handling multiple compi-
lation requests.

[0030] The response queue 105 of the VM server 109 col-
lects responses to be transmitted to the client processes 101.
The responses to the requests from the client processes 101
are, for example, executable binary formats of the software
codes or outputs obtained by executing the software codes. A
binary cache in the VM server 109 stores object and class
files, wherein the object and class files are generated by
compiling the software codes. The response handler 102 pro-
vided on each of the client processes 101 handles the
responses from the VM server 109. In an embodiment, a
single VM server 109 is employed for compilation and execu-
tion of the software codes. In another embodiment, multiple
VM servers 109 are employed for compilation and execution
of the software codes.

[0031] FIG. 2 exemplarily illustrates a first computer
implemented method for compiling and executing multiple
software codes using multiple forked child processes. The
client processes 101 broadcast requests for availability of the

US 2012/0124559 Al

VM server 109, as exemplarily illustrated in FIG. 1, for com-
piling the software codes. Through a listening port, the VM
server 109 continually listens to the broadcasts of requests
from the client processes 101. The VM server 109 sends the
VM server information to a client process 101 announcing the
availability of the VM server 109 for handling compilation
requests. The availability of the VM server 109 is handled by
a separate thread.

[0032] A requesthandling set of child processes parses 201
incoming requests from each user and loads 202 the parsed
requests in a request queue 106. A set of forked child pro-
cesses handles 203 the loaded requests. A compilation set of
forked child processes compiles 204 the software codes and
an execution set of forked child processes executes 205 the
compiled software codes. Each of the three sets of child
processes is forked. The request handling set of forked child
processes listens to the compilation and execution requests
from each of the multiple client processes 101. The request
handling set of forked child processes then accepts and stacks
the compilation and execution requests in the request queue
106. The request handling set of forked child processes fur-
ther separates the requests for compilation and requests for
execution of the software codes. The request handling set of
forked child processes transfers the execution requests from
the request queue 106 to a run request queue and stacks the
execution requests in the run request queue. The compilation
set of forked child processes handles the loaded requests from
the request queue 106 and compiles the software codes cor-
responding to the handled requests. The compilation set of
forked child processes then sends a compilation response
back to the client process 101. The execution set of forked
child processes handles the run requests from the run request
queue and executes the software codes corresponding to the
handled run requests. The executed software codes are then
loaded 206 on a file system. The execution set of forked child
processes then sends an execution response back to the client
process 101.

[0033] In one implementation of the first computer imple-
mented method for compiling and executing multiple soft-
ware codes disclosed herein, the software codes are coded, for
example, in a C/C++ programming language. In another
implementation of the first computer implemented method
disclosed herein, the software codes are coded, for example,
in a Java® programming language.

[0034] FIG. 3 illustrates a second computer implemented
method for compiling and executing multiple software codes
using multiple threads. The client processes 101 broadcast
requests for availability of the VM server 109, as exemplarily
illustrated in FIG. 1, for compiling the software codes.
Through a listening port, the VM server 109 continually lis-
tens to the broadcasts of requests from the client processes
101. The VM server 109 sends the VM server information to
a client process 101 announcing the availability of the VM
server 109 for handling compilation requests. The availability
of the VM server 109 is handled by a separate thread.

[0035] A request handling thread pool is provided in the
VM server 109 to handle the incoming compilation and
execution requests from the client processes 101. The request
handling thread pool continually listens to compilation and
execution requests from the client processes 101. The request
handling thread pool parses 301 the incoming compilation
and execution requests received from a user. The request
handling thread pool then loads 302 the parsed requests, that
is, accepts and stacks the compilation and execution requests

May 17, 2012

in a request queue 106. The request handling thread pool
further separates the compilation and execution requests. The
request handling thread pool transfers the execution requests
from the request queue 106 to a run request queue and stacks
the requests in the run request queue. A compilation thread
pool handles 303 the loaded compilation requests from the
request queue 106 and compiles 304 the software codes cor-
responding to the handled requests. The compilation thread
pool then sends a compilation response back to the client
process 101. An execution thread pool handles 303 the loaded
execution requests from the run request queue and executes
305 the software codes corresponding to the handled run
requests. The executed software codes are then loaded 306 on
a file system. The execution thread pool then sends an execu-
tion response back to the client process 101.

[0036] In one implementation of the computer imple-
mented system disclosed herein, a compiler in the VM server
109 for compiling the software codes employs a system file
cache and a binary cache. The system file cache stores com-
mon libraries and system libraries required for the compila-
tion of the software codes. Header files required for compil-
ing software codes coded, for example, in a C or C++
programming language may also be stored in the system file
cache. The binary cache stores object files and class files
generated as outputs from the compilation of the software
codes. The object files are generated when the software codes
coded, for example, in a C or C++ programming language are
compiled. The class files are generated when software codes
coded, for example, in a Java® programming language are
compiled. The binary cache is maintained separately for each
client process 101. During the compilation of a software code,
if a required header or library file is not available on the
system file cache, the required header or library file is loaded
from a file system to the system file cache. The loaded header
or library file is used for current and subsequent compilation
of'the software codes. The system file cache is updated when
anew compilation request, requiring a header or a library file
not present in the system file cache, is processed.

[0037] During the compilation of a software code coded,
for example, ina C or C++ programming language, if a source
file of the software code has not undergone modifications
since the previous compilation, then the object file stored in
the binary cache from the previous compilation of the source
file is used for the current compilation of the C or C++
software code. During the compilation of a software code
coded, for example, in a Java® programming language, if a
source file of the software code has not undergone modifica-
tions since the previous compilation, then the class file stored
in the binary cache from the previous compilation of the
source file is used for the current compilation of the Java
software code.

[0038] The system file cache and the binary cache are
updated with every compilation. For the execution of a C or
C++ software code, the required common libraries, system
libraries, and the header files stored in the system file cache
are linked with the object files in the binary cache to generate
an executable file from the software code. For the execution of
a Java software code, the required class libraries, system
libraries, and other common libraries stored in the system file
cache are linked with the class files in the binary cache to
generate an executable file from the software code. The final
executable files may then be written into a file system.

[0039] As disclosed herein, for compiling C or C++ soft-
ware codes, an open source compiler, for example, an Intel®

US 2012/0124559 Al

C++ compiler, a TenDRA® compiler, a GNU compiler col-
lection (GCC), an open Watcom® C compiler, etc., may be
used for compilation. For compiling Java software codes, an
open source compiler such as the Jikes compiler from IBM,
Inc., the Java development kit (JDK) from Sun Microsystems,
Inc., an Eclipse® compiler, etc., may be used for compilation.
The compilation features described above may be incorpo-
rated in such open source compilers.

[0040] FIG. 4 illustrates a computer implemented method
for concurrently evaluating performance of multiple users in
one or more tests. The computer implemented method dis-
closed herein provides 401a performance evaluation platform
accessible by multiple client devices of the users via a net-
work. The client devices comprise, for example, personal
computers, laptops, tablet computers, mobile communication
devices, etc. The network is, for example, the internet, an
intranet, a local area network, a wide area network, a com-
munication network implementing Wi-Fi® of the Wireless
Ethernet Compatibility Alliance, Inc., a cellular network, a
mobile communication network, etc. The performance evalu-
ation platform hosts multiple tests across multiple knowledge
domains, for example, information technology (IT) domains,
non-IT domains, banking, accounting, etc. The tests com-
prise, for example, programming tests, database tests, net-
working tests, banking tests, essay writing tests, assignments,
etc. The performance evaluation platform comprises a virtual
machine server 109 exemplarily illustrated in FIG. 1. In an
embodiment, the performance evaluation platform comprises
multiple virtual machine servers 109 that allow a higher con-
currency in multiple operations of the performance evalua-
tion platform. The performance evaluation platform monitors
connections with the client devices, performs network ses-
sion management, and manages requests for evaluation of
solution responses transmitted by each of the client devices of
the users. As used herein, the term “solution response” refers
to an answer or a response provided by a user to a particular
question or a problem contained in a test. The performance
evaluation platform hosts static content, for example, hyper-
text markup language (HTML) pages, etc., and dynamic con-
tent, for example, JavaServer pages (JSP), hypertext prepro-
cessor (PHP) pages, etc.

[0041] The computer implemented method disclosed
herein provides 402 a client application on each of the client
devices of the users for managing interaction of each of the
users with the performance evaluation platform via the net-
work. One or more of multiple users select 403 one or more of
multiple tests hosted by the performance evaluation platform
via a graphical user interface (GUI) provided by the client
application on each of the client devices of the users. For
example, the client application renders a test selection menu
on the GUI that allows the users to select a type of test that
they would prefer to take. In another example, the client
application receives inputs from the user specifying a techni-
cal domain in which the user would like to take a test. The
client application stores information on the selection of the
test, for example, by tagging the selection to a “test type
code”. The test type code identifies the type of test selected by
the user and for which the user would be evaluated by the
performance evaluation platform. The test type code is
defined, for example, by a specific knowledge domain, such
as engineering, banking, education, etc., or by a specific skill
such as software programming, essay writing, etc. Further,
the test type code is attached to each of the solution responses
provided by the user for the test. Since each user can take up

May 17, 2012

multiple tests in different knowledge domains, the solution
responses to the tests are distinguished by their respective test
type codes.

[0042] The client application on each of the client devices
of the users establishes a connection with the performance
evaluation platform via the network. The client application
and the performance evaluation platform comprise sockets,
for example, a client socket 103 and a server socket 108
respectively, as exemplarily illustrated in FIG. 1, for commu-
nicating with each other. The client application on each of the
client devices of the user transmits requests querying avail-
ability of the performance evaluation platform for triggering
initiation of the selected tests. The client application receives
connection parameters from the performance evaluation plat-
form via the network for establishing the connection with the
performance evaluation platform, on confirming availability
of the performance evaluation platform. The connection
parameters comprise, for example, the virtual machine (VM)
server information disclosed in the detailed description of
FIG. 1. The connection parameters uniquely identify the con-
nection between the performance evaluation platform and
each of the client devices, specifying, for example, an internet
protocol address and a port number of each of the sockets 108
over which the performance evaluation platform listens to the
requests for availability of the performance evaluation plat-
form from each of the client devices.

[0043] Furthermore, the performance evaluation platform
continually monitors requests from the client application on
each of the client devices, for example, for establishing a
connection with each of the client devices, for concurrently
processing the solution responses acquired from the users,
etc. The performance evaluation platform employs a separate
thread for listening to the requests from the client application
on each of the client devices as disclosed in the detailed
description of FIG. 1. The client application on each of the
client devices exchanges connection messages with the per-
formance evaluation platform for confirming the establish-
ment of the connection as disclosed in the detailed description
of FIG. 1. For example, the client application transmits a
connection request message to the performance evaluation
platform that is acknowledged by the performance evaluation
platform, thereby establishing the connection.

[0044] The client application, in communication with the
performance evaluation platform via the network, configures
404 an adaptive test environment at each of the client devices
of the users based on the selected tests. As used herein, the
term “adaptive test environment” refers to a test environment
that can be configured to accommodate specific features,
settings, file formats, software components, etc., necessary
for conduction of a particular type of test on a client device.
Consider an example where the client application needs to
execute an applet, or a Java® application of Oracle Corpora-
tion. The configuration of the test environment comprises
installing Java Runtime Environment (JRE) for executing the
applet or the Java® application.

[0045] The performance evaluation platform validates user
credentials of the users during the configuration of the adap-
tive test environment at each of the client devices of the users
by the client application. The performance evaluation plat-
form validates session credentials, for example, by authenti-
cating a login user identifier (ID) and a password of each of
theusers. In an example, the performance evaluation platform
allows each of the users to register on the performance evalu-
ation platform for accessing a particular test. The perfor-

US 2012/0124559 Al

mance evaluation platform collects the user credentials, for
example, the user ID and the password of the user. When a
user logs in at the performance evaluation platform to take a
selected test, the performance evaluation platform compares
the user credentials entered by the user during log-in with the
user credentials collected during registration and validates the
user credentials.

[0046] The client application creates a working directory
for the users on selection of the tests by the users. The client
application downloads a set of startup configuration files
necessary for conduction of the selected tests in the working
directory. Furthermore, the client application stores the solu-
tion responses to the selected tests acquired from the users in
the working directory, and automatically uploads the solution
responses from the working directory to the performance
evaluation platform via the network.

[0047] In an embodiment, the client application automati-
cally loads plug-in components from the performance evalu-
ation platform via the network based on the selected tests
during configuration of the adaptive test environment at each
of the client devices. The plug-in components are software
components that provide additional capabilities to the test
environment for customizing settings of the test environment
to incorporate interfaces, file formats, etc., which are neces-
sary for conduction of the selected tests. The performance
evaluation platform provides different plug-in components
that can be loaded by the client application for different types
of'tests, for example, programming tests, database tests, net-
working tests, banking tests, essay writing tests, etc.

[0048] Furthermore, the plug-in components enable con-
figuration of the test environment according to a user’s pref-
erences. For example, a plug-in component can configure the
settings of a source code editor according to a user’s prefer-
ences, for example, by providing a command line interface,
anintegrated development environment (IDE), etc. Inanother
example, a particular test may require a new file format for a
programming language that is not supported by the client
application. In this case, the client application automatically
loads a software program configured to support the new file
format. In an embodiment, the performance evaluation plat-
form provides application programming interfaces (APIs)
that enable configuration of the plug-in components by third
party software developers for supporting new applications.
The performance evaluation platform integrates the plug-in
components provided by the third party software developers
to the performance evaluation platform and allows the client
application to automatically load plug-in components from
the performance evaluation platform via the network based
on the selected tests.

[0049] The client application loads 405 the selected tests
from the performance evaluation platform, in the configured
adaptive test environment, via the network. The tests are, for
example, configured by the performance evaluation platform
as a set of questions referenced from predetermined question
compendia. The question compendia comprise, for example,
a set of objective questions testing the knowledge of the users
in a particular domain, a set of programming questions that
require the users to develop software codes for a specified
application or debug faulty software code, etc.

[0050] Inanembodiment, the performance evaluation plat-
form sets a time duration for the selected tests. The client
application triggers a timer on initiation of the time duration
set by the performance evaluation platform for the selected
tests for timing the performance of each of the users in the

May 17, 2012

selected tests. The client application maintains the timer for
computing the amount of time taken by each of the users to
complete the test. The timer is, for example, a decreasing
timer or an increasing timer. The increasing timer measures
the amount of time taken by a user to complete a test. The
decreasing timer measures the amount of time starting from a
predetermined time count until the time count reaches zero;
the user therefore needs to complete the test within a time
duration equal to the predetermined time count set at the
initiation of the test. That is, the decreasing timer allows a
fixed time for completion of the test. Furthermore, the timer
can be stoppable or non-stoppable. A stoppable timer stops
when the user logs out of the session. The timer is reset and
starts again when the user logs in and continues the test. An
unstoppable timer does not stop when the user logs out, and
continues to count even when the user is not actively working
on the test. When the user logs in again, the user is allowed to
continue with the test until the timer completes, that is, within
a predetermined time count set at the start of the test.

[0051] The client application configures the timer for tim-
ing a test, for example, using the following pseudocode:

Calculation of displayed time:
If (timed test) is true
Check (increasing or decreasing timer)
If(increasing timer)
Check (Non-stoppable)
If (Non-stoppable)
Display-time = time elapsed since start of the test
If (stoppable)
Display-time = time elapsed
If (decreasing timer)
Check (Non-stoppable or stoppable)
If (Non-stoppable)
Display time = time elapsed since start of the test
If (time elapsed since the start of the test is more than time
given for the test)
Disallow the user from completing the test
If (stoppable)
Display time = time used up by the user.
If (time used up by the user more than time allowed for the
test) then
Disallow the user from completing the test.

[0052] The client application on each of the client devices
acquires 406 solution responses to the selected tests from the
users and transmits 407 the acquired solution responses to the
performance evaluation platform via the network. The solu-
tion responses comprise, for example, a text file recording the
solutions to the questions in the selected test, a source code
file for a programming test, etc. For programming tests, the
client application acquires, for example, source code files that
are compiled and evaluated for compilation errors, run time
errors, etc., by the performance evaluation platform.

[0053] The performance evaluation platform configures
408 processing elements for concurrently processing the
solution responses acquired from the users based on the
selected tests. The performance evaluation platform spawns
multiple forked child processes, or multiple threads for con-
current processing of the solution responses acquired from
the users as disclosed in the detailed description of FIGS. 1-3.
The concurrent processing of the solution responses by the
performance evaluation platform optimizes the time taken for
performing individual steps from the point of acquisition of
the solution responses from the client application to the point
of transmission of evaluation scores generated by the perfor-

US 2012/0124559 Al

mance evaluation platform to the client application. For
example, the performance evaluation platform provides a
caching mechanism comprising a system file cache for stor-
ing header files and class libraries, and a binary cache for
storing object files and class files for expediting the concur-
rent processing of the solution responses of the users as dis-
closed in the detailed description of FIG. 3.

[0054] Each set of child processes, or pool of threads are
configured for performing a specific functional step for evalu-
ating the performance of the users in the selected tests. The
performance evaluation platform acquires the solution
responses from the client application on each of the client
devices. The performance evaluation platform loads the
acquired solution responses in a request queue 106 exemplar-
ily illustrated in FIG. 1. The request queue 106 comprises, for
example, a set of solution responses acquired from multiple
users for a particular time slot. The solution responses may be
from multiple knowledge domains. The solution responses in
the request queue 106 are scheduled for processing and evalu-
ation according to a predetermined scheduling policy, for
example, a first-in-first-out (FIFO) scheduling policy. The
performance evaluation platform parses the acquired solution
responses in the request queue 106 for procuring information
on the selection of the tests hosted by the performance evalu-
ation platform. For example, the performance evaluation plat-
form obtains the “test type code” that specifies the type of test
taken by the user. The performance evaluation platform clas-
sifies the parsed solution responses based on the procured
information on the selection of the tests. The performance
evaluation platform transfers the classified solution responses
to solution processing queues associated with the selected
tests.

[0055] Each solution processing queue forwards the solu-
tion responses of a particular test in a particular knowledge
domain, for example, to an associated evaluation engine that
performs evaluation of the performance of the user in that
particular knowledge domain. For example, the solution pro-
cessing queues dispatch the solution responses acquired from
a client device to the respective evaluation engine based on a
test type such as a programming test in Java®, C or C++, C#,
an open computing language OpenCL™ of Apple Inc., com-
pute unified device architecture CUDA® of Nvidia Corpora-
tion, etc. The evaluation engine for a programming test com-
prises, for example, a compiler as disclosed in the detailed
description of FIG. 3, for performing compilation of the soft-
ware codes acquired as solution responses. In an example, the
solution processing queue is a run request queue that directs
software codes acquired from the users to a run request han-
dler for execution of the software codes as disclosed in the
detailed description of FIG. 1. The performance evaluation
platform analyzes the classified solution responses in the
associated solution processing queues for assigning an evalu-
ation score to each of the classified solution responses based
on evaluation criteria. Each of the steps of processing the
solution responses comprising loading the acquired solution
responses in a request queue 106, parsing the acquired solu-
tion responses, classifying the parsed solution responses, and
analyzing the solution responses is performed concurrently,
for example, using multiple child processes, multiple threads,
etc.

[0056] The performance evaluation platform concurrently
evaluates 409 the performance of each of the users in the
selected tests based on the concurrent processing of the solu-
tion responses. The performance evaluation platform per-

May 17, 2012

forms concurrent evaluation of the performance of each of the
users in multiple knowledge domains. For example, the per-
formance evaluation platform can evaluate a user’s computer
software skills such as proficiency in Microsott (MS) Office®
of Microsoft Corporation, Adobe® Digital Publishing Suite
of Adobe Systems, Inc., etc. Further, the performance evalu-
ation platform can evaluate skills of the users in non-engi-
neering domains such as banking, accounting, etc. The per-
formance evaluation platform generates evaluation scores for
each ofthe users based on evaluation criteria and transmits the
generated evaluation scores to the client devices of the users
via the network. The evaluation criteria for generation of the
evaluation scores comprise, for example, time duration for
completion of the selected tests by each of the users, accuracy
of'the solution responses acquired from each of the users, etc.
Consider an example where a user selects a formal essay
writing test for evaluation by the performance evaluation
platform. The performance evaluation platform determines
the amount of time taken by the user to complete the test, the
number of grammatical errors, spelling errors, logical incon-
sistencies, etc., in the test, and assigns an evaluation score
based on the time taken for completion of the essay and the
number of errors detected in the essay. The performance
evaluation platform applies predetermined weighting factors
to each of the evaluation criteria considered for derivation of
the evaluation score.

[0057] Inanembodiment, the performance evaluation plat-
form computes a relative score based on the generated evalu-
ation scores of each of the users for providing a comparative
assessment of the performance of each of the users in the
selected tests. Since the performance evaluation platform
concurrently evaluates the performance of each of the users in
the selected tests, the performance evaluation platform gen-
erates a complete list of evaluation scores of the users who
have taken a particular test within a specified time slot. The
performance evaluation platform applies, for example, a
comparative assessment procedure, with the highest rating
that identifies the best performer among the users taking the
test, and the lowest rating that identifies the worst performer
among the users taking the test, to evaluate the performance
of'each user compared with the performance of the other users
who have taken the test within the same time slot.

[0058] The performance evaluation platform stores the
solution responses acquired from the users and the evaluation
scores generated on concurrent evaluation of the performance
of each of the users in the selected tests, in a database of the
performance evaluation platform for progressively tracking
the performance of each of the users in the selected tests over
aperiod of time. The database also stores user information for
tracking an association between the user and the solution
responses. For example, the performance evaluation platform
tracks the number of errors in solution responses, that is,
software codes in a series of programming tests taken by a
user over a period of time and analyzes the consistency of
evaluation scores of the user over the period of time. The
performance evaluation platform generates graphical repre-
sentations for recording a statistical variation in the perfor-
mance of the user both individually and with reference to
other users who have taken up the same test over the period of
time. The performance evaluation platform retrieves the
evaluation scores tagged against each of the solution
responses from the database. The performance evaluation
platform generates a report comprising the evaluation scores,
a brief description of the methodology for generating the

US 2012/0124559 Al

evaluation scores, the relative score of the user with respect to
the other users taking the test, etc.

[0059] Furthermore, the performance evaluation platform
employs a file management system, for example, for manag-
ing different versions of the solution responses acquired from
the users for progressively tracking the performance of the
users. The file management system maintains a history of the
solution responses acquired from each user. This allows the
user to review the solution responses submitted by the user
over a period of time. The performance evaluation platform
logs the time of acquisition of the solution responses, the
name of the user associated with each solution response, etc.,
in a log file that is maintained in the file management system.

[0060] Inanembodiment, the performance evaluation plat-
form adaptively renders questions in the selected tests based
on a preliminary set of solution responses acquired from the
users. In an example, the performance evaluation platform
examines the evaluation scores calculated for a predeter-
mined number of solution responses acquired from a user and
increases or reduces the difficulty of the questions rendered in
the selected test in real time based on the evaluation scores. In
another example, the performance evaluation platform
increases or reduces the allowed time duration, or the number
of questions for the selected test based on the preliminary set
of solution responses acquired from the users.

[0061] Inanembodiment, the performance evaluation plat-
form provides application programming interfaces (APIs) for
enabling development of customized plug-in components by
third party applications for evaluating the selected tests. The
third party applications comprise, for example, software
applications, evaluation tools, etc., developed by third party
developers, which can be integrated into the performance
evaluation platform. The performance evaluation platform
provides application programming interfaces (APIs) that
enable configuration of plug-in components by third party
developers for evaluating the solution responses. This allows
the performance evaluation platform to incorporate different
testing methodologies for evaluating the solution responses.
Consider an example where the performance evaluation plat-
form comprises a compiler that compiles a solution response
that is in the form of a software code of a particular program-
ming language and generates a list of errors and warnings.
The performance evaluation platform provides an API that
abstracts a computing platform of the performance evaluation
platform to different plug-in components. The APIs provide
an interface through which the plug-in components can
access the solution response for further processing. The plug-
in components are, for example, scripts, libraries, etc., pro-
vided by a third party developer, for example, an external
software development agency, that generate ratings for the
severity of the errors, possible consequences, and an overall
evaluation score for the software code. The plug-in compo-
nents can also be customized for different programming lan-
guages, applications, etc. The APIs allow the different plug-in
components to access the user provided data, for example,
solution responses and the data generated by the performance
evaluation platform, for example, the compiled source code,
scripts, etc. The performance evaluation platform adds on the
plug-in component to the compiler allowing a complete
evaluation of the software code. Therefore, the third party
developers can extend the capabilities of evaluation by the
performance evaluation platform via the customized plug-in
components developed using the APIs.

May 17, 2012

[0062] The performance evaluation platform provides core
services for enabling configuration of the adaptive test envi-
ronment by the client application and evaluation of the solu-
tion responses. The performance evaluation platform pro-
vides plug-in components for technologies, for example, the
Android™ technology of Google, Inc., for testing skills such
as programming in Java®, for knowledge domains such as
banking, engineering, etc. The plug-in components are pro-
vided for evaluation, for example, of accounting skills, soft-
ware, PHP, etc. The plug-in components provide additional
features to the client application, evaluation engines of the
performance evaluation platform, the tests, etc. The plug-in
components allow an ecosystem of software developers to
build different evaluation methods and systems that allow
evaluation of skills, proficiencies, knowledge, etc., across
different knowledge domains.

[0063] FIG. 5 illustrates a computer implemented system
500 for concurrently evaluating performance of multiple
users in one or more tests. The computer implemented system
500 disclosed herein comprises a client application 502 on
each of multiple client devices 501 of users and a perfor-
mance evaluation platform 503 that is accessible by the client
devices 501 of the users via the network 504. The client
devices 501 comprise, for example, personal computers, lap-
tops, tablet computers, mobile communication devices, etc.
The client application 502 manages interaction of each of the
users with the performance evaluation platform 503 via a
network 504. The client application 502 comprises a graphi-
cal user interface 502a, a test environment configuration
module 502¢, and a test management module 5024.

[0064] The graphical user interface (GUI) 502a enables
selection of one or more of multiple tests hosted by the per-
formance evaluation platform 503, by one or more users, on
each of the client devices 501 of the users. The test environ-
ment configuration module 502¢, in communication with the
performance evaluation platform 503 via the network 504,
configures an adaptive test environment at each of the client
devices 501 of the users based on the selected tests. The test
environment configuration module 502¢ automatically loads
plug-in components 503g from the performance evaluation
platform 503 via the network 504 based on the selected tests.
[0065] The test management module 5024 loads the
selected tests in the configured adaptive test environment
from the performance evaluation platform 503 via the net-
work 504. The test management module 5024 also acquires
the solution responses to the selected tests from the users and
transmits the solution responses to the performance evalua-
tion platform 503 via the network 504. In an embodiment, the
client application 502 further comprises a timer 502¢ that is
triggered on initiation of a time duration set by the perfor-
mance evaluation platform 503 for the selected tests for tim-
ing the performance of each of the users in the selected tests.
[0066] The client application 502 further comprises a client
connection module 5025 that establishes a connection with a
server connection module 503a of the performance evalua-
tion platform 503 via the network 504. The client connection
module 5025 transmits requests querying availability of the
performance evaluation platform 503 for triggering initiation
of'the selected tests. Furthermore, the client connection mod-
ule 5024 receives connection parameters from the perfor-
mance evaluation platform 503 via the network 504 for estab-
lishing the connection with the performance evaluation
platform 503, on confirming the availability of the perfor-
mance evaluation platform 503. The server connection mod-

US 2012/0124559 Al

ule 5034 of the performance evaluation platform 503 continu-
ally monitors requests from the client application 502 on each
of the client devices 501 for establishing a connection with
each of the client devices 501. Furthermore, the server con-
nection module 503a continually monitors requests from the
client application 502 on each of the client devices 501 for
concurrent processing of the solution responses acquired
from the users.

[0067] The performance evaluation platform 503 com-
prises a processing module 503¢, an evaluation engine 5034,
a user credentials validation module 5035, and a database
503f. The user credentials validation module 5035 validates
user credentials of the users, during configuration of the adap-
tive test environment at the client devices 501 of the users by
the test environment configuration module 502¢ of the client
application 502. The processing module 503¢ configures pro-
cessing elements for concurrently processing the solution
responses acquired from the users based on the selected tests.
The processing module 503¢ spawns multiple forked child
processes or multiple threads for concurrent processing of the
solution responses acquired from the users. The processing
module 503¢ loads the solution responses acquired from the
users in a request queue 106 exemplarily illustrated in FIG. 1.
The processing module 503¢ parses the acquired solution
responses in the request queue 106 for procuring information
on selection of the tests hosted by the performance evaluation
platform 503. The processing module 503¢ classifies the
parsed solution responses based on the procured information
on the selection of the tests and transfers the classified solu-
tion responses to solution processing queues associated with
the selected tests.

[0068] The evaluation engine 5034 concurrently evaluates
the performance of each of the users in the selected tests based
on the concurrent processing of the solution responses. The
performance evaluation platform 503 may comprise one or
more evaluation engines 5034 for concurrently evaluating the
performance of each of the users in the selected tests based on
the concurrent processing of the solution responses. The
evaluation engine 503d, in communication with the process-
ing module 503 ¢, analyzes the classified solution responses in
the associated solution processing queues configured by the
processing module 503¢, for assigning an evaluation score to
each of the classified solution responses based on evaluation
criteria, for example, time duration for completion of the
selected tests by each of the users, accuracy of the solution
responses acquired from each of the users, etc., as disclosed in
the detailed description of FIG. 4.

[0069] The performance evaluation platform 503 further
comprises a question rendering module 503e. The question
rendering module 503e generates questions for each of the
tests and hosts multiple tests across multiple knowledge
domains. The question rendering module 503e¢ adaptively
renders questions in the selected tests based on a preliminary
set of solution responses acquired from the users. The evalu-
ation engine 5034 generates evaluation scores for each of the
users based on the evaluation criteria and transmits the gen-
erated evaluation scores to each of the client devices 501 of
the users via the network 504. In an embodiment, the evalu-
ation engine 5034 computes a relative score based on the
generated evaluation scores of each of the users for providing
a comparative assessment of the performance of each of the
users in the selected tests. The database 503/ stores, for
example, user information, the solution responses acquired
from the users, the evaluation scores generated on the con-

May 17, 2012

current evaluation of the performance of each of the users in
the selected tests, etc., for progressively tracking the perfor-
mance of each of the users in the selected tests over a period
of time.

[0070] Inanembodiment, the performance evaluation plat-
form 503 further comprises an application programming
interface (API) module 503/. The API module 503/ provides
application programming interfaces that enable development
of customized plug-in components 503g by third party appli-
cations for evaluating the selected tests.

[0071] FIG. 6 exemplarily illustrates the architecture of a
computer system 600 employed for concurrently evaluating
performance of multiple users in one or more tests. The client
application 502 on each of the users’ client devices 501,
exemplarily illustrated in FIG. 5, employs the architecture of
the computer system 600, for example, for configuring an
adaptive test environment at each of the client devices 501 of
the users based on the selected tests, loading the selected tests
from the performance evaluation platform 503, and acquiring
and transmitting solution responses to the selected tests from
the users. The performance evaluation platform 503, exem-
plarily illustrated in FIG. 5, employs the architecture of the
computer system 600, for example, for configuring process-
ing elements for concurrently processing the solution
responses acquired from the users based on the selected tests,
and for concurrently evaluating the performance of each of
the users in the selected tests based on the concurrent pro-
cessing of the solution responses. The performance evalua-
tion platform 503 and each of the client devices 501 of the
computer implemented system 500 exemplarily illustrated in
FIG. 5 employ the architecture of the computer system 600
exemplarily illustrated in FIG. 6.

[0072] The performance evaluation platform 503 commu-
nicates with a client device 501 of each of the users via the
network 504, for example, a short range network or a long
range network. The network 504 is, for example, the internet,
alocal area network, a wide area network, a wireless network,
a mobile network, etc. The computer system 600 comprises,
for example, a processor 601, a memory unit 602 for storing
programs and data, an input/output (I/O) controller 603, a
network interface 604, a data bus 605, a display unit 606,
input devices 607, a fixed media drive 608, a removable media
drive 609 for receiving removable media, output devices 610,
etc.

[0073] The processor 601 is an electronic circuit that
executes computer programs. The memory unit 602 is used
for storing programs, applications, and data. For example, the
client connection module 5025, the test environment configu-
ration module 502¢, the test management module 5024, the
timer 502¢, etc., of the client application 502 are stored in the
memory unit 602 of the computer system 600 of the client
device 501. The server connection module 503a, the user
credentials validation module 5035, the processing module
503c¢, the evaluation engine 503d, the question rendering
module 503e¢, the database 503f, etc., are stored in the
memory unit 602 of the computer system 600 of the perfor-
mance evaluation platform 503. The memory unit 602 is, for
example, a random access memory (RAM) or another type of
dynamic storage device that stores information and instruc-
tions for execution by the processor 601. The memory unit
602 also stores temporary variables and other intermediate
information used during execution of the instructions by the
processor 601. The computer system 600 further comprises a

US 2012/0124559 Al

read only memory (ROM) or another type of static storage
device that stores static information and instructions for the
processor 601.

[0074] Thenetwork interface 604 enables connection of the
computer system 600 to the network 504. For example, the
client devices 501 of each of the users and the performance
evaluation platform 503 connect to the network 504 via the
respective network interfaces 604. The network interface 604
comprises, for example, an infrared (IR) interface, an inter-
face implementing Wi-Fi® of the Wireless Ethernet Compat-
ibility Alliance, Inc., a universal serial bus (USB) interface, a
local area network (LAN) interface, a wide area network
(WAN) interface, etc. The I/O controller 603 controls the
input actions and output actions performed by the user using
the client device 501. The data bus 605 permits communica-
tions between the modules, for example, 5025, 502¢, 502d,
etc., of the client application 502 on the client device 501 of
the user, and between 503a, 5035, 503¢, 503d, 503e¢, etc., of
the performance evaluation platform 503.

[0075] Thedisplay unit 606 of the client device 501, via the
GUI 5024, displays information, for example, a selection
menu for selecting a particular test, a “start test tab” that
enables initiation of the selected test by the user and loading
of the individual questions of the selected test, display inter-
faces, icons, etc., of the adaptive test environment that enable
the user to enter the solution responses to the questions of the
selected test, the evaluation scores received from the perfor-
mance evaluation platform 503 on performance of concurrent
evaluation of the solution responses acquired from the user,
etc.

[0076] The input devices 607 are used for inputting data
into the computer system 600. The user uses the input devices
607 to select a particular test, initiate the test, and enter the
solution responses to the questions of the selected test. The
input devices 607 are, for example, a keyboard such as an
alphanumeric keyboard, a joystick, a pointing device such as
a computer mouse, a touch pad, a light pen, etc. For example,
theuser can select the test by clicking onarelevant entry in the
selection menu using a computer mouse, or can initiate a test
by double clicking a “start test tab” on the GUI 502a using a
computer mouse.

[0077] The output devices 610 output the results of opera-
tions performed by the performance evaluation platform 503
and the client device 501 of a particular user. For example, the
client device 501 notifies the user that the time duration of the
test has ended through an audio alarm notification. In another
example where a test based on programming skills is con-
ducted, the client device 501 notifies the user with informa-
tion regarding failure of compilation of a source code as
received from the performance evaluation platform 503 via
the GUI 5024 of the client application 502.

[0078] Computer applications and programs are used for
operating the computer system 600. The programs are loaded
onto the fixed media drive 608 and into the memory unit 602
of the computer system 600 via the removable media drive
609. In an embodiment, the computer applications and pro-
grams may be loaded directly via the network 504. Computer
applications and programs are executed by double clicking a
related icon displayed on the display unit 606 using one of the
input devices 607.

[0079] The computer system 600 employs an operating
system for performing multiple tasks. The operating system is
responsible for management and coordination of activities
and sharing of resources of the computer system 600. The

May 17, 2012

operating system further manages security of the computer
system 600, peripheral devices connected to the computer
system 600, and network connections. The operating system
employed on the computer system 600 recognizes, for
example, inputs provided by the user using one of the input
devices 607, the output display, files, and directories stored
locally on the fixed media drive 608, for example, a hard
drive. The operating system on the computer system 600
executes different programs using the processor 601.

[0080] The processor 601 retrieves the instructions for
executing the modules, for example, 5025, 502¢, 5024, etc.,
of'the client application 502 on the client device 501 from the
memory unit 602. The processor 601 also retrieves the
instructions for executing the modules, for example, 503a,
5035, 503¢, 503d, 503e, 503f, etc., of the performance evalu-
ation platform 503. A program counter determines the loca-
tion of the instructions in the memory unit 602. The program
counter stores a number that identifies the current position in
the program of the modules, for example, 50256, 502¢, 502d,
etc., of the client application 502, and the modules, for
example, 503a, 5035, 503¢, 503d, 503e, 503f, ctc., of the
performance evaluation platform 503.

[0081] The instructions fetched by the processor 601 from
the memory unit 602 after being processed are decoded. The
instructions are placed in an instruction register in the pro-
cessor 601. After processing and decoding, the processor 601
executes the instructions. For example, the test environment
configuration module 502¢ of the client application 502
defines instructions for configuring an adaptive test environ-
ment at each of the client devices 501 of the users based on the
selected tests, in communication with the performance evalu-
ation platform 503. The test environment configuration mod-
ule 502¢ defines instructions for automatically loading plug-
in components 503g from the performance evaluation
platform 503 via the network 504 based on the selected tests.
The user credentials validation module 5035 of the perfor-
mance evaluation platform 503 defines instructions for vali-
dating the user credentials of the users during configuration of
the adaptive test environment at each of the client devices 501
of the users.

[0082] The client connection module 5025 of the client
application 502 defines instructions for transmitting requests
querying availability of the performance evaluation platform
503 for triggering initiation of the selected tests. The client
connection module 5025 defines instructions for receiving
connection parameters from the performance evaluation plat-
form 503 via the network 504 and using the received connec-
tion parameters for establishing a connection with the perfor-
mance evaluation platform 503, on confirming the
availability of the performance evaluation platform 503.
[0083] The test management module 5024 of the client
application 502 defines instructions for loading the selected
tests in the configured adaptive test environment from the
performance evaluation platform 503 the network 504. The
test management module 5024 also defines instructions for
acquiring and transmitting solution responses to the selected
tests from the users, to the performance evaluation platform
503 via the network 504.

[0084] The processing module 503¢ of the performance
evaluation platform 503 defines instructions for configuring
processing elements for concurrently processing the solution
responses acquired from the users based on the selected tests.
The processing module 503¢ also defines instructions for
spawning multiple forked child processes or multiple threads

US 2012/0124559 Al

for concurrent processing of the solution responses acquired
from the users. The processing module 503¢ also defines
instructions for loading the solution responses acquired from
the users in a request queue 106 exemplarily illustrated in
FIG. 1, and parsing the acquired solution responses in the
request queue 106 for procuring information on the selection
of'the tests. The processing module 503¢ also defines instruc-
tions for classifying the parsed solution responses based on
the procured information on the selection of the tests and
transferring the classified solution responses to solution pro-
cessing queues associated with the selected tests.

[0085] The server connection module 503a of the perfor-
mance evaluation platform 503 defines instructions for con-
tinually monitoring requests from the client application 502
on each of'the client devices 501 for establishing a connection
with each of the client devices 501, and for continually moni-
toring requests for concurrent processing of the solution
responses acquired from the users. The evaluation engine
503d of the performance evaluation platform 503 defines
instructions for concurrently evaluating the performance of
each of the users in the selected tests based on the concurrent
processing of the solution responses. The question rendering
module 503¢ of the performance evaluation platform 503
defines instructions for adaptively rendering questions in the
selected tests based on a preliminary set of solution responses
acquired from the users. The evaluation engine 5034 defines
instructions for generating evaluation scores for each of the
users taking the test based on evaluation criteria and for
transmitting the generated evaluation scores to the corre-
sponding client devices 501 of the users via the network 504.
Furthermore, the evaluation engine 5034 defines instructions
for computing a relative score based on the generated evalu-
ation scores of the users for providing a comparative assess-
ment of the performance of each of the users in the selected
tests. The evaluation engine 503d defines instructions for
analyzing the solution responses in the associated solution
processing queues configured by the processing module 503¢
for assigning an evaluation score to each of the classified
solution responses based on evaluation criteria.

[0086] The database 503f of the performance evaluation
platform 503 defines instructions for storing the solution
responses acquired from the users and the evaluation scores
generated on concurrent evaluation of the performance of
each of the users in the selected tests for progressively track-
ing the performance of each of the users in the selected tests
over a period of time.

[0087] The processor 601 of the computer system 600
employed by the client device 501 retrieves the instructions
defined by the client connection module 5024, the test envi-
ronment configuration module 502¢, the test management
module 5024, etc., of the client application 502 on the client
device 501, and executes the instructions. The processor 601
of the computer system 600 employed by the performance
evaluation platform 503 retrieves the instructions defined by
the server connection module 503a, the user credentials vali-
dation module 5035, the processing module 503c¢, the evalu-
ation engine 503d, the question rendering module 503e, the
database 503f; etc., of the performance evaluation platform
503, and executes the instructions.

[0088] At the time of execution, the instructions stored in
the instruction register are examined to determine the opera-
tions to be performed. The processor 601 then performs the
specified operations. The operations comprise arithmetic and
logic operations. The operating system performs multiple

May 17, 2012

routines for performing a number of tasks required to assign
the input devices 607, the output devices 610, and memory for
execution of the modules, for example, 5025, 502¢, 502d,
etc., of the client application 502 on the client device 501, and
the modules, for example, 503a, 5035, 503¢, 5034, 503e¢,
503f, etc., of the performance evaluation platform 503. The
tasks performed by the operating system comprise, for
example, assigning memory to the modules, for example,
5025, 502¢, 5024, etc., of the client application 502 on the
client device 501, and to the modules, for example, 503a,
5035, 503¢, 503d, 503e, 503f, etc., of the performance evalu-
ation platform 503, and to data used by the client application
502 on the client device 501, and the performance evaluation
platform 503, moving data between the memory unit 602 and
disk units, and handling input/output operations. The operat-
ing system performs the tasks on request by the operations
and after performing the tasks, the operating system transfers
the execution control back to the processor 601. The proces-
sor 601 continues the execution to obtain one or more outputs.
The outputs of the execution of the modules, for example,
5025, 502¢, 5024, etc., of the client application 502 on the
client device 501, and the modules, for example, 5034, 5035,
503c¢, 5034, 503¢, 503f, etc., of the performance evaluation
platform 503, are displayed to the user on the display unit 606.

[0089] Disclosed herein is also a computer program prod-
uct comprising computer executable instructions embodied
in a non-transitory computer readable storage medium. As
used herein, the term “non-transitory computer readable stor-
age medium” refers to all computer readable media, for
example, non-volatile media such as optical disks or mag-
netic disks, volatile media such as a register memory, a pro-
cessor cache, etc., and transmission media such as wires that
constitute a system bus coupled to the processor 601, except
for a transitory, propagating signal.

[0090] The computer program product disclosed herein
comprises multiple computer program codes for concurrently
evaluating the performance of each of multiple users in one or
more tests. For example, the computer program product dis-
closed herein comprises a first computer program code for
providing the performance evaluation platform 503 acces-
sible by multiple client devices 501 of multiple users via the
network 504; a second computer program code for providing
the client application 502 on each of the client devices 501 of
the users for managing interaction of each of the users with
the performance evaluation platform 503 via the network
504; a third computer program code for enabling selection of
one or more tests hosted by the performance evaluation plat-
form 503, by the users via the GUI 502a provided by the client
application 502 on each of the client devices 501 of the users;
a fourth computer program code for configuring an adaptive
test environment at each of the client devices 501 of the users
based on the selected tests by the client application 502, in
communication with the performance evaluation platform
503 via the network 504; a fifth computer program code for
loading the selected tests by the client application 502 in the
configured adaptive test environment from the performance
evaluation platform 503 via the network 504; a sixth com-
puter program code for acquiring and transmitting solution
responses to the selected tests from the users by the client
application 502 on each of the client devices 501 of the users
to the performance evaluation platform 503 via the network
504; a seventh computer program code for configuring pro-
cessing elements by the performance evaluation platform 503
for concurrently processing the solution responses acquired

US 2012/0124559 Al

from the users based on the selected tests; and an eighth
computer program code for concurrently evaluating the per-
formance of each of the users in the selected tests by the
performance evaluation platform 503 based on the concurrent
processing of the solution responses. The computer program
product disclosed herein further comprises additional com-
puter program codes for performing additional steps that may
be required and contemplated for performing concurrent
evaluation of the performance of each of multiple users in one
or more tests.

[0091] The computer program codes comprising the com-
puter executable instructions are embodied on the non-tran-
sitory computer readable storage medium. The processor 601
of'the computer system 600 retrieves these computer execut-
able instructions and executes them. When the computer
executable instructions are executed by the processor 601, the
computer executable instructions cause the processor 601 to
perform the steps of the computer implemented method for
concurrently evaluating the performance of each of multiple
users in one or more tests. In an embodiment, a single piece of
computer program code comprising computer executable
instructions performs one or more steps of the computer
implemented method disclosed herein for concurrently
evaluating the performance of multiple users in one or more
tests.

[0092] Disclosed herein is also a computer program prod-
uct comprising a computer program code for providing a
request handling set of child processes to parse incoming
compilation and execution requests and load the parsed
requests in a queue, wherein the request handling set of child
processes are forked; a computer program code for providing
arequest handling thread pool to parse incoming compilation
and execution requests and load the parsed requests in a
queue; a computer program code for providing a compilation
set of child processes to compile multiple software codes,
wherein the compilation set of child processes are forked; a
computer program code for providing a compilation thread
pool to compile multiple software codes; a computer program
code for parsing and loading common libraries and system
libraries; a computer program code for storing the parsed
common libraries and system libraries in a system file cache;
a computer program code for parsing and loading the soft-
ware codes, and linking the parsed software codes with the
parsed common libraries and system libraries; a computer
program code for providing an execution set of child pro-
cesses to execute the software codes, wherein the execution
set of child processes are forked; a computer program code
for providing an execution thread pool to execute the software
codes; and a computer program code for loading the executed
software codes on a file system.

[0093] FIG.7 exemplarily illustrates a high level schematic
diagram of the computer implemented system 500 for con-
currently evaluating the performance of multiple users in
multiple tests. The computer implemented system 500 dis-
closed herein comprises the performance evaluation platform
503 that evaluates the performance of multiple users in spe-
cific tests selected by the users. The users access the perfor-
mance evaluation platform 503 via the network 504, for
example, the internet, using client devices 501, for example,
personal computers for taking the test. The performance
evaluation platform 503 communicates with each of the client
devices 501 via the network 504, for example, the internet.
The performance evaluation platform 503 comprises the vir-
tual machine server 109, evaluation engines 5034 each of

May 17, 2012

which evaluate the performance of each of the users in a
specific knowledge domain and generate evaluation scores,
and the database 503fthat stores the results of the evaluation,
for example, the evaluation scores of the users. The virtual
machine server 109 configures separate threads for concur-
rent processing of the solution responses acquired from the
users using the client devices 501. The communication
between the virtual machine server 109, the evaluation
engines 503d, and the database 503/ of the performance
evaluation platform 503 is exemplarily illustrated in FIG. 7.
[0094] Each of the client devices 501 establishes a connec-
tion with the performance evaluation platform 503 via the
network 504. The virtual machine server 109 in the perfor-
mance evaluation platform 503 configures a separate thread
for monitoring the establishment of the connection with each
of the client devices 501. The performance evaluation plat-
form 503 validates the user credentials comprising, for
example, a user identifier and a password of each of the users,
and verifies whether the users have registered with the per-
formance evaluation platform 503. Once the performance
evaluation platform 503 confirms the identities of the users by
validating the user credentials, the performance evaluation
platform 503 allows the users to initiate the test. In an
example, the users select a test that evaluates the program-
ming skills in the Java® programming language. The type of
the test is denoted, for example, by a unique test type code.
[0095] The client application 502, exemplarily illustrated
in FIG. 5, on each of the client devices 501 performs a pre-
liminary check to verify whether the client device 501 has
installed the Java runtime environment (JRE) since the test
needs Java® applets to execute correctly. On determining that
the JRE is installed on the client device 501, the client appli-
cation 502 on each client device 501 loads the test from the
performance evaluation platform 503. The test comprises a
set of start-up configuration files and files comprising the
actual questions of the test. The test further comprises addi-
tional data on the parameters of the test, for example, the time
duration allowed for completion of the test, etc. The client
application 502 further checks whether the test needs plug-in
components 503g, for example, to support file formats of the
loaded files necessary for running the test. The client appli-
cation 502 loads the required variant of the plug-in compo-
nent 503g depending on the selected test. The client applica-
tion 502 loads the files comprising the questions for the test.
[0096] The client application 502 creates a working direc-
tory for the user for storing the files comprising the questions
and the solution responses provided by the users to the ques-
tions. The client application 502 starts a timer 502¢ of dura-
tion equal to the time duration specified by the performance
evaluation platform 503. The user records the solution
responses, for example, a set of programming files, and stores
the files in the working directory. The client application 502
checks the time of completion of the test by each of the users
and inserts the information along with the test type code to the
programming files. The client application 502 retrieves the
solution responses, that is, the programming files from the
working directory and transmits the programming files along
with metadata files to the performance evaluation platform
503 via the network 504.

[0097] The performance evaluation platform 503 receives
the solution responses, that is, the programming files from all
the users taking the test. The virtual machine server 109 in the
performance evaluation platform 503 configures a thread
pool for parsing the solution responses, thereby ensuring

US 2012/0124559 Al

concurrency of processing of the solution responses. Each
thread parses a solution response, obtains the test type code,
and forwards the solution response to the evaluation engine
503d associated with the test type. For example, the evalua-
tion engine 503d for evaluating programming skills in Java®
evaluates the programming files and assigns an evaluation
score for each of the programming files submitted by the
users. The evaluation engine 5034 stores the evaluation scores
computed for each of the solution responses in the database
503/, and transmits a report notifying the evaluation scores to
each of the client devices 501 of the users. The client devices
501 of the users receive the evaluation report and display the
evaluation report on the GUI 5024 to the users.

[0098] It will be readily apparent that the various methods
and algorithms disclosed herein may be implemented on
computer readable media appropriately programmed for gen-
eral purpose computers and computing devices. As used
herein, the term “computer readable media” refers to non-
transitory computer readable media that participate in provid-
ing data, for example, instructions that may be read by a
computer, a processor or a like device. Non-transitory com-
puter readable media comprise all computer readable media,
for example, non-volatile media, volatile media, and trans-
mission media, except for a transitory, propagating signal.
Non-volatile media comprise, for example, optical disks or
magnetic disks and other persistent memory volatile media
including a dynamic random access memory (DRAM),
which typically constitutes a main memory. Volatile media
comprise, for example, a register memory, a processor cache,
a random access memory (RAM), etc. Transmission media
comprise, for example, coaxial cables, copper wire and fiber
optics, including wires that constitute a system bus coupled to
a processor. Common forms of computer readable media
comprise, for example, a floppy disk, a flexible disk, a hard
disk, magnetic tape, any other magnetic medium, a compact
disc-read only memory (CD-ROM), a digital versatile disc
(DVD), any other optical medium, punch cards, paper tape,
any other physical medium with patterns of holes, a random
access memory (RAM), a programmable read only memory
(PROM), an erasable programmable read only memory
(EPROM), an electrically erasable programmable read only
memory (EEPROM), a flash memory, any other memory chip
or cartridge, or any other medium from which a computer can
read. A “processor” refers to any one or more microproces-
sors, central processing unit (CPU) devices, computing
devices, microcontrollers, digital signal processors or like
devices. Typically, a processor receives instructions from a
memory or like device and executes those instructions,
thereby performing one or more processes defined by those
instructions. Further, programs that implement such methods
and algorithms may be stored and transmitted using a variety
of media, for example, the computer readable media in a
number of manners. In an embodiment, hard-wired circuitry
or custom hardware may be used in place of, or in combina-
tion with, software instructions for implementation of the
processes of various embodiments. Therefore, the embodi-
ments are not limited to any specific combination ofhardware
and software. In general, the computer program codes com-
prising computer executable instructions may be imple-
mented in any programming language. Some examples of
languages that can be used comprise C, C++, C#, Perl,
Python, or JAVA. The computer program codes or software
programs may be stored on or in one or more mediums as
object code. The computer program product disclosed herein

May 17, 2012

comprises computer executable instructions embodied in a
non-transitory computer readable storage medium, wherein
the computer program product comprises computer program
codes for implementing the processes of various embodi-
ments.

[0099] Where databases are described such as database
503/, it will be understood by one of ordinary skill in the art
that (i) alternative database structures to those described may
bereadily employed, and (ii) other memory structures besides
databases may be readily employed. Any illustrations or
descriptions of any sample databases disclosed herein are
illustrative arrangements for stored representations of infor-
mation. Any number of other arrangements may be employed
besides those suggested by tables illustrated in the drawings
or elsewhere. Similarly, any illustrated entries of the data-
bases represent exemplary information only; one of ordinary
skill in the art will understand that the number and content of
the entries can be different from those disclosed herein.

[0100] Further, despite any depiction of the databases as
tables, other formats including relational databases, object-
based models, and/or distributed databases may be used to
store and manipulate the data types disclosed herein. Like-
wise, object methods or behaviors of a database can be used to
implement various processes such as those disclosed herein.
In addition, the databases may, in a known manner, be stored
locally or remotely from a device that accesses data in such a
database. In embodiments where there are multiple databases
in the system, the databases may be integrated to communi-
cate with each other for enabling simultaneous updates of
data linked across the databases, when there are any updates
to the data in one of the databases.

[0101] The present invention can be configured to work in
a network environment including a computer that is in com-
munication with one or more devices via a network. The
computer may communicate with the devices directly or indi-
rectly, via a wired medium or a wireless medium such as the
Internet, a local area network (LAN), a wide area network
(WAN) or the Ethernet, token ring, or via any appropriate
communications means or combination of communications
means. Hach of the devices may comprise computers such as
those based on the Intel® processors, AMD® processors,
UltraSPARC® processors, Sun® processors, IBM® proces-
sors, etc., that are adapted to communicate with the computer.
Any number and type of machines may be in communication
with the computer.

[0102] The foregoing examples have been provided merely
for the purpose of explanation and are in no way to be con-
strued as limiting of the present invention disclosed herein.
While the invention has been described with reference to
various embodiments, it is understood that the words, which
have been used herein, are words of description and illustra-
tion, rather than words of limitation. Further, although the
invention has been described herein with reference to particu-
lar means, materials, and embodiments, the invention is not
intended to be limited to the particulars disclosed herein;
rather, the invention extends to all functionally equivalent
structures, methods and uses, such as are within the scope of
the appended claims. Those skilled in the art, having the
benefit of the teachings of this specification, may affect
numerous modifications thereto and changes may be made
without departing from the scope and spirit of the invention in
its aspects.

US 2012/0124559 Al

I claim:
1. A computer implemented method for concurrently
evaluating performance of a plurality of users in one or more
tests, comprising:
providing a performance evaluation platform accessible by
a plurality of client devices of said users via a network;

providing a client application on each of said client devices
of said users for managing interaction of each of said
users with said performance evaluation platform via said
network;
selecting one or more of a plurality of tests hosted by said
performance evaluation platform, by one or more of said
users via a graphical user interface provided by said
client application on each of corresponding said client
devices of said one or more of said users;
configuring an adaptive test environment at said each of
said corresponding said client devices of said one or
more of said users based on said selected one or more
tests by said client application in communication with
said performance evaluation platform via said network;

loading said selected one or more tests from said perfor-
mance evaluation platform by said client application in
said configured adaptive test environment via said net-
work;

acquiring and transmitting solution responses to said

selected one or more tests from said one or more of said
users by said client application on said each of said
corresponding said client devices of said one or more of
said users to said performance evaluation platform via
said network;

configuring processing elements by said performance

evaluation platform for concurrently processing said
solution responses acquired from said one or more of
said users based on said selected one or more tests; and
concurrently evaluating said performance of each of said
one or more of said users in said selected one or more
tests by said performance evaluation platform based on
said concurrent processing of said solution responses.

2. The computer implemented method of claim 1, wherein
said configuration of said adaptive test environment at said
each of said corresponding said client devices by said client
application comprises automatically loading plug-in compo-
nents from said performance evaluation platform via said
network based on said selected one or more tests.

3. The computer implemented method of claim 1, wherein
said concurrent evaluation of said performance of said each of
said one or more of said users in said selected one or more
tests by said performance evaluation platform comprises gen-
erating evaluation scores for said each of said one or more of
said users based on evaluation criteria and transmitting said
generated evaluation scores to said each of said correspond-
ing said client devices of said each of one or more of said users
via said network.

4. The computer implemented method of claim 3, wherein
said evaluation criteria for said generation of said evaluation
scores by said performance evaluation platform comprise a
time duration for completion of said selected one or more
tests by said each of said one or more of said users and
accuracy of said solution responses acquired from said each
of said one or more of said users.

5. The computer implemented method of claim 3, further
comprising computing a relative score based on said gener-
ated evaluation scores of said each of said one or more of said

May 17, 2012

users for providing a comparative assessment of said perfor-
mance of said each of said one or more of said users in said
selected one or more tests.

6. The computer implemented method of claim 1, wherein
said concurrent processing of said solution responses
acquired from said one or more of said users by said perfor-
mance evaluation platform, comprises:

loading said acquired solution responses in a request

queue;

parsing said acquired solution responses in said request

queue for procuring information on said selection of said
one or more of said tests hosted by said performance
evaluation platform; and

classifying said parsed solution responses based on said

procured information on said selection of said one or
more of said tests and transferring said classified solu-
tion responses to solution processing queues associated
with said selected one or more tests.

7. The computer implemented method of claim 6, wherein
said concurrent evaluation of said performance of said each of
said one or more of said users in said selected one or more
tests by said performance evaluation platform based on said
concurrent processing of said solution responses comprises
analyzing said classified solution responses in said associated
solution processing queues for assigning an evaluation score
to each of said classified solution responses based on evalu-
ation criteria.

8. The computer implemented method of claim 1, further
comprising setting a time duration for one or more of said
selected one or more tests by said performance evaluation
platform, wherein said client application triggers a timer on
initiation of said time duration for said one or more of said
selected one or more tests for timing said performance of said
each of said one or more of said users in said one or more of
said selected one or more tests.

9. The computer implemented method of claim 1, further
comprising adaptively rendering questions in said selected
one or more tests based on a preliminary set of said solution
responses acquired from said one or more of said users by said
performance evaluation platform.

10. The computer implemented method of claim 1,
wherein said configuration of said processing elements com-
prises spawning one of a plurality of forked child processes
and a plurality of threads by said performance evaluation
platform for said concurrent processing of said solution
responses acquired from said one or more of said users.

11. The computer implemented method of claim 1, further
comprising establishing a connection by said client applica-
tion on said each of said corresponding said client devices of
said one or more of said users to said performance evaluation
platform via said network by performing:

transmitting requests querying availability of said perfor-

mance evaluation platform by said client application on
said each of said corresponding said client devices of
said one or more of said users for triggering initiation of
said selected one or more tests; and

receiving connection parameters from said performance

evaluation platform via said network for establishing
said connection with said performance evaluation plat-
form, on confirming said availability of said perfor-
mance evaluation platform.

12. The computer implemented method of claim 1, further
comprising continually monitoring requests from said client
application on said each of said corresponding said client

US 2012/0124559 Al

devices by said performance evaluation platform for one of
establishing a connection with said each of said correspond-
ing said client devices, and said concurrent processing of said
solution responses acquired from said one or more of said
users.
13. The computer implemented method of claim 1, further
comprising validating user credentials of said one or more of
said users by said performance evaluation platform during
said configuration of said adaptive test environment at said
each of said corresponding said client devices of said one or
more of said users by said client application.
14. The computer implemented method of claim 1, further
comprising storing said solution responses acquired from
said one or more of said users and evaluation scores generated
on said concurrent evaluation of said performance of said
each of said one or more of said users in said selected one or
more tests, in a database of said performance evaluation plat-
form for progressively tracking said performance of said each
of said one or more of said users in said selected one or more
tests over a period of time.
15. The computer implemented method of claim 1,
wherein said performance evaluation platform hosts said plu-
rality of said tests across a plurality of knowledge domains.
16. A computer implemented system for concurrently
evaluating performance of a plurality of users in one or more
tests, comprising:
a client application on each of a plurality of client devices
of said users, that manages interaction of each of said
users with a performance evaluation platform via a net-
work, wherein said client application comprises:
a graphical user interface that enables selection of one or
more ofaplurality oftests hosted by said performance
evaluation platform, by each of one or more of said
users;
atest environment configuration module that configures
an adaptive test environment at each of corresponding
said client devices of said one or more of said users
based on said selected one or more tests, in commu-
nication with said performance evaluation platform
via said network; and
a test management module that performs:
loading of said selected one or more tests in said
configured adaptive test environment from said
performance evaluation platform via said network;
and

acquiring and transmitting solution responses to said
selected one or more tests from said one or more of
said users to said performance evaluation platform
via said network; and

said performance evaluation platform that is accessible by
said client devices of said users via said network,
wherein said performance evaluation platform com-
prises:

a processing module that configures processing ele-
ments for concurrently processing said solution
responses acquired from said one or more of said
users based on said selected one or more tests; and

one or more evaluation engines that concurrently evalu-
ate said performance of said each of said one or more
of said users in said selected one or more tests based
on said concurrent processing of said solution
responses.

17. The computer implemented system of claim 16,
wherein said test environment configuration module of said

May 17, 2012

client application automatically loads plug-in components
from said performance evaluation platform via said network
based on said selected one or more tests.

18. The computer implemented system of claim 16,
wherein said one or more evaluation engines generate evalu-
ation scores for said each of said one or more of said users
based on evaluation criteria and transmits said generated
evaluation scores to said each of said corresponding said
client devices of said each of one or more of said users via said
network, wherein said evaluation criteria for said generation
of'said evaluation scores by said performance evaluation plat-
form comprise a time duration for completion of said selected
one or more tests by said each of said one or more of said users
and accuracy of said solution responses acquired from said
each of said one or more of said users.

19. The computer implemented system of claim 16,
wherein said processing module performs:

loading said solution responses acquired from said one or

more of said users in a request queue;

parsing said acquired solution responses in said request

queue for procuring information on said selection of said
one or more of said tests hosted by said performance
evaluation platform; and

classifying said parsed solution responses based on said

procured information on said selection of said one or
more of said tests and transferring said classified solu-
tion responses to solution processing queues associated
with said selected one or more tests.

20. The computer implemented system of claim 19,
wherein said one or more evaluation engines in communica-
tion with said processing module analyzes said classified
solution responses in said associated solution processing
queues configured by said processing module, for assigning
an evaluation score to each of said classified solution
responses based on evaluation criteria.

21. The computer implemented system of claim 16,
wherein said client application further comprises a timer that
is triggered on initiation of a time duration set by said perfor-
mance evaluation platform for one or more of said selected
one or more tests for timing said performance of said each of
said one or more of said users in said one or more of said
selected one or more tests.

22. The computer implemented system of claim 16,
wherein said performance evaluation platform further com-
prises a question rendering module that adaptively renders
questions in said selected one or more tests based on a pre-
liminary set of said solution responses acquired from said one
or more of said users.

23. The computer implemented system of claim 16,
wherein said processing module of said performance evalu-
ation platform spawns one of a plurality of forked child pro-
cesses and a plurality of threads for said concurrent process-
ing of said solution responses acquired from said one or more
of said users.

24. The computer implemented system of claim 16,
wherein said client application on said each of said corre-
sponding said client devices of said one or more of said users
further comprises a client connection module that establishes
a connection with said performance evaluation platform via
said network, wherein said client connection module per-
forms:

transmitting requests querying availability of said perfor-

mance evaluation platform for triggering initiation of
said selected one or more tests; and

US 2012/0124559 Al

receiving connection parameters from said performance
evaluation platform via said network for establishing
said connection with said performance evaluation plat-
form, on confirming said availability of said perfor-
mance evaluation platform.

25. The computer implemented system of claim 16,
wherein said performance evaluation platform further com-
prises a server connection module that continually monitors
requests from said client application on said each of said
corresponding said client devices for one of establishing a
connection with said each of said corresponding said client
devices, and said concurrent processing of said solution
responses acquired from said one or more of said users.

26. The computer implemented system of claim 16,
wherein said performance evaluation platform further com-
prises a user credentials validation module that validates user
credentials of said one or more of said users, during said
configuration of said adaptive test environment at said each of
said corresponding said client devices of said one or more of
said users by said test environment configuration module of
said client application.

27. The computer implemented system of claim 16,
wherein said performance evaluation platform further com-
prises a database that stores said solution responses acquired
from said one or more of said users and evaluation scores
generated on said concurrent evaluation of said performance
of'said each of said one or more of said users in said selected
one or more tests for progressively tracking said performance
of'said each of said one or more of said users in said selected
one or more tests over a period of time.

28. A computer program product comprising computer
executable instructions embodied in a non-transitory com-
puter readable storage medium, wherein said computer pro-
gram product comprises:

a first computer program code for providing a performance

evaluation platform accessible by a plurality of client
devices of a plurality of users via a network;

16

May 17, 2012

a second computer program code for providing a client
application on each of said client devices of said users
for managing interaction of each of said users with said
performance evaluation platform via said network;

a third computer program code for enabling selection of
one or more of a plurality of tests hosted by said perfor-
mance evaluation platform, by one or more of said users
via a graphical user interface provided by said client
application on each of corresponding said client devices
of said one or more of said users;

a fourth computer program code for configuring an adap-
tive test environment at said each of said corresponding
said client devices of said one or more of said users
based on said selected one or more tests by said client
application in communication with said performance
evaluation platform via said network;

a fifth computer program code for loading said selected one
or more tests by said client application in said configured
adaptive test environment from said performance evalu-
ation platform via said network;

a sixth computer program code for acquiring and transmit-
ting solution responses to said selected one or more tests
from said one or more of said users by said client appli-
cation on said each of said corresponding said client
devices of said one or more of said users to said perfor-
mance evaluation platform via said network;

a seventh computer program code for configuring process-
ing elements by said performance evaluation platform
for concurrently processing said solution responses
acquired from said one or more of said users based on
said selected one or more tests; and

an eighth computer program code for concurrently evalu-
ating said performance of said each of said one or more
of said users in said selected one or more tests by said
performance evaluation platform based on said concur-
rent processing of said solution responses.

sk sk sk sk sk

